Mathematics

$$\displaystyle \int \dfrac x{2+x^2} dx$$


SOLUTION
$$\displaystyle \int \dfrac x{2+x^2} dx\\2+x^2=t\implies 2xdx=dt\\\displaystyle \int \dfrac 1{2t} dt\\\dfrac 12\log t\\\dfrac  12{\log(2+x^2)}+c$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$\int { \cfrac { 1-{ \left( \cot { x }  \right)  }^{ 2010 } }{ \tan { x } +{ \left( \cot { x }  \right)  }^{ 2011 } } dx } =\cfrac { 1 }{ k } \log _{ e }{ \left| { \left( \sin { x }  \right)  }^{ k }+{ \left( \cos { x }  \right)  }^{ k } \right|  } +C$$, then $$k$$ is equal to
  • A. $$2010$$
  • B. $$2011$$
  • C. $$2013$$
  • D. $$2012$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int x\{f(x^{2}) g' (x^{2})+f '(x^{2})g(x^{2})\}dx$$ is equal to
  • A. $$ f(x^{2}) g$$' $$(x^{2})-g(x^{2}) f$$'$$(x^{2})+c$$
  • B. $${\dfrac{1}{2}}\{f(x^{2})g(x^{2}) f$$' $$(x^{2})\}+c$$
  • C. $${\dfrac{1}{2}}\{f(x^{2}) g$$' $$(x^{2})-g(x^{2}) f$$' $$(x^{2})\}+c$$
  • D. $$ {\dfrac{1}{2}} [f(x^{2})g(x^{2})]+c$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Matrix Hard
The value of $$ \displaystyle  I = \int_{0}^{a}f\left ( x \right )dx $$
$$ a= \pi ,f\left ( x \right )= x\sin ^{4}x $$ $$ \pi \left ( \pi -2 \right )/2 $$
$$ a= \pi ,f\left ( x \right )= x\sin ^{4}x\cos ^{6} x $$ $$ \displaystyle \frac{\pi }{3\sqrt{3}}$$
$$ a= \pi/2 ,f\left ( x \right )= \displaystyle \frac{\cos ^{2} x}{1+\cos x\sin x} $$ $$ \displaystyle \frac{3\pi^{2} }{512}$$
$$ a= \pi ,f\left ( x \right )= \displaystyle \frac{x\tan x}{\sec x+\tan x} $$ $$ \displaystyle \frac{3}{16}\pi^{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Hard
Solve: $$\displaystyle\int \dfrac {dx}{\sqrt {21-4x-x^2}} $$
  • A. $$\arcsin \dfrac{(x+4)}{5} +C$$
  • B. $$\arcsin \dfrac{(x-4)}{5} +C$$
  • C. None of these
  • D. $$\arcsin \dfrac{(x+2)}{5} +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
The value of $$\int _{ { \pi  }/{ 4 } }^{ { \pi  }/{ 2 } }{ { e }^{ x }\left( \log { \sin { x }  } +\cot { x }  \right) dx } $$ is 
  • A. $${ e }^{ { \pi }/{ 4 } }\log { 2 } $$
  • B. $$-{ e }^{ { \pi }/{ 4 } }\log { 2 } $$
  • C. $$-\dfrac { 1 }{ 2 } { e }^{ { \pi }/{ 4 } }\log { 2 } $$
  • D. $$\dfrac { 1 }{ 2 } { e }^{ { \pi }/{ 4 } }\log { 2 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer