Mathematics

$$\displaystyle \int \dfrac {\sin 2x}{1+\cos^2x}dx$$


ANSWER

$$-\ln (1+\cos^2x)+C$$


SOLUTION
$$\int { \frac { \sin { 2x }  }{ 1+\cos ^{ 2 }{ x }  }  } dx$$
Put $$ 1+\cos ^{ 2 }{ x } =t\\ 0+2\cos { \left( -\sin { x }  \right) dx=dt } \\ -2\sin { x } \cos { x } dx=dt\\ -\sin { 2x } dx=dt\\ \sin { 2xdx=-dt } $$
Thus $$\int { \frac { \sin { 2x }  }{ 1+\cos ^{ 2 }{ x }  } dx } =\int { \frac { -dt }{ t } =-\int { \frac { dt }{ t }  }  } \\ =-\log { \left| t \right| +c } \\ =-\log { \left( 1+\cos ^{ 2 }{ x }  \right) +c } $$
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate the following integral:
$$\displaystyle \int { \cfrac { \sin { x }  }{ \sqrt { 4\cos ^{ 2 }{ x } -1 }  }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \underset{0}{\overset{\pi}{\int}} \dfrac{x \, dx}{1 + \sin \, x} = $$
  • A. $$\dfrac{\pi}{6}$$
  • B. $$\dfrac{\pi}{3}$$
  • C. none of these
  • D. $$\pi$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate: $$\displaystyle\int \dfrac {1}{2x+3}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Hard
Evaluate the following integrals:
$$\int { \cfrac { 1 }{ 5+4\cos { x }  }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer