Mathematics

# $\displaystyle \int \dfrac{ dx}{\sqrt{1 + x}}$

##### SOLUTION
$\displaystyle \int \dfrac{dx}{\sqrt{1 + x}}\\t=1+x\\dx=dt\\\displaystyle \int \dfrac{dt}{\sqrt t}=2\sqrt t\\2\sqrt{1+x}+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Integrate:
$\int _{ -\pi /2 }^{ \pi /2 }{ ln\left[ 2\left( \dfrac{ 4-\sin { \theta } }{ 4+\sin { \theta } } \right) \right] } d\theta$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
Evaluate: $\displaystyle\int \cot x\log \sin xdx$
• A. $\displaystyle \left ( \log \sin x \right )^{2}$
• B. $\displaystyle \frac{1}{2}{\left ( \log \sin x \right )}$
• C. $\displaystyle \frac{1}{2}\left ( \log co\sec x \right )^{2}$
• D. $\displaystyle \frac{1}{2}\left ( \log \sin x \right )^{2}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate the following integral:
$\int { { e }^{ \cos ^{ 2 }{ x } }\sin { 2x } } dx\quad$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\int {\dfrac{5}{{1 + x}}\;dx}$

$\displaystyle\int^3_0(2x^2+3x+5)dx$.