Mathematics

$\displaystyle \int \dfrac {1-x}{1+x}$

SOLUTION
$\int {\cfrac{{1 - x}}{{1 + x}}dx}$
$\int {\left( {\cfrac{1}{{1 + x}} - \cfrac{x}{{1 + x}}} \right)dx}$
$\int {\left( {\cfrac{1}{{1 + x}} - \left( {\cfrac{{1 + x - 1}}{{1 + x}}} \right)} \right)dx}$
$\int {\left( {\cfrac{1}{{1 + x}} - 1 + \cfrac{1}{{1 + x}}} \right)dx}$
$\int {\cfrac{2}{{1 + x}}dx - \int {1} dx}$
$=2 \log (x+1) -x+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Single Correct Medium
If $\displaystyle \frac{3x}{(x-6)(x+a)}=\frac{2}{x-6}+\frac{1}{x+a}$ then $a$ =
• A. $1$
• B. $2$
• C. $4$
• D. $3$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate $\displaystyle \int_0^{1}(3x^2+2x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
$\int {\dfrac{{dx}}{{2\sqrt x (1 + x)}} = }$
• A. $\dfrac{1}{2}\tan (\sqrt x ) + C$
• B. $2\tan{^{ - 1}}(\sqrt x ) + C$
• C. $None\,of\,these$
• D. $\tan{^{ - 1}}(\sqrt x ) + C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Hard
$\int { \cfrac { dx }{ \sqrt { { x }^{ 2 }-6x+10 } } } =$?
• A. $\log { \left| x+\sqrt { { x }^{ 2 }-6x+10 } \right| } +C$
• B. $\log { \left| x-\sqrt { { x }^{ 2 }-6x+10 } \right| } +C$
• C. none of these
• D. $\log { \left| \left( x-3 \right) +\sqrt { { x }^{ 2 }-6x+10 } \right| } +C$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
$\displaystyle \int x^{2}\tan ^{-1}x\:dx.$
• A. $\displaystyle \frac{x^{3}}{3}\tan^{-1}x+\frac{1}{6}x^{2}+\frac{1}{6}\log\left ( x^{2}+1 \right ).$
• B. $\displaystyle \frac{x^{3}}{3}\tan^{-1}x-\frac{1}{3}x^{2}+\frac{1}{6}\log\left ( x^{2}+1 \right ).$
• C. $\displaystyle \frac{x^{3}}{3}\tan^{-1}x-\frac{1}{6}x^{2}+\frac{1}{3}\log\left ( x^{2}+1 \right ).$
• D. $\displaystyle \frac{x^{3}}{3}\tan^{-1}x-\frac{1}{6}x^{2}+\frac{1}{6}\log\left ( x^{2}+1 \right ).$