Mathematics

# $\displaystyle \int (3x^2-1 )dx$

$x^3-x$

##### SOLUTION
$\displaystyle \int (3x^2-1 )dx\\=3\dfrac{x^3}{3}-x\\=x^3-x$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111

#### Realted Questions

Q1 Single Correct Hard
If $\displaystyle \frac{x^3-6x^2+10x-2}{x^2-5x+6}=f(x)+\frac{A}{x-2}+\frac{B}{x-3}$, then $f(x)=$
(Note : $A,B$ are constants)
• A. $x+1$
• B. $x$
• C. $x+2$
• D. $x-1$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
$\int \sqrt{\dfrac{cos x-cos^{3} x}{1-cos^{3} x}}$.dx is equal to

• A. $\dfrac{2}{3}sin^{-1}(cos^{3/2}x)+C$
• B. $\dfrac{3}{2}sin^{-1}(cos^{3/2}x)+C$
• C. none of these
• D. $\dfrac{2}{3}cos^{-1}(cos^{3/2}x)+C$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Integrate the rational function   $\cfrac {x}{(x-1)(x-2)(x-3)}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
Let $f\left( x \right)$ be a function such that $f\left( 0 \right) =f^{ ' }0$ and $f^{ '' }\left( x \right) =\sec ^{ 4 }{ x+4 }$ then $f\left( x \right) =$
• A. $\log { \left( \sin { x } \right) } +\dfrac { 1 }{ 3 } \tan ^{ 3 }{ x+6x }$
• B. $\log { \left( \cos { x } \right) } +\dfrac { 1 }{ 6 } \cos ^{ 2 }{ x+\dfrac { { x }^{ 2 } }{ 5 } }$
• C. $\log { \left( \sec { x } \right) + } \dfrac { 1 }{ 6 } \sin ^{ 3 }{ x } +{ x }^{ 2 }$
• D. $\dfrac { 2 }{ 3 } \log { \left( \sec { x } \right) } +\dfrac { 1 }{ 6 } \tan ^{ 2 }{ x+2{ x }^{ 2 } }$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Passage Medium
Consider two differentiable functions $f(x), g(x)$ satisfying $\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$ & $\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$. where $\displaystyle f(x)>0 \forall x \in R$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives

1 Verified Answer | Published on 17th 08, 2020