Mathematics

$$\displaystyle \int (3x^2-1 )dx$$


ANSWER

$$x^3-x$$


SOLUTION
$$\displaystyle \int (3x^2-1 )dx\\=3\dfrac{x^3}{3}-x\\=x^3-x$$
View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 111
Enroll Now For FREE

Realted Questions

Q1 Single Correct Hard
If $$\displaystyle \frac{x^3-6x^2+10x-2}{x^2-5x+6}=f(x)+\frac{A}{x-2}+\frac{B}{x-3}$$, then $$f(x)=$$ 
(Note : $$A,B$$ are constants)
  • A. $$x+1$$
  • B. $$x$$
  • C. $$x+2$$
  • D. $$x-1$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
$$\int \sqrt{\dfrac{cos x-cos^{3} x}{1-cos^{3} x}}$$.dx is equal to


  • A. $$\dfrac{2}{3}sin^{-1}(cos^{3/2}x)+C$$
  • B. $$\dfrac{3}{2}sin^{-1}(cos^{3/2}x)+C$$
  • C. none of these
  • D. $$\dfrac{2}{3}cos^{-1}(cos^{3/2}x)+C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Integrate the rational function   $$\cfrac {x}{(x-1)(x-2)(x-3)}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
Let $$f\left( x \right)$$ be a function such that $$f\left( 0 \right) =f^{ ' }0$$ and $$f^{ '' }\left( x \right) =\sec ^{ 4 }{ x+4 }$$ then $$f\left( x \right) =$$
  • A. $$\log { \left( \sin { x } \right) } +\dfrac { 1 }{ 3 } \tan ^{ 3 }{ x+6x }$$
  • B. $$\log { \left( \cos { x } \right) } +\dfrac { 1 }{ 6 } \cos ^{ 2 }{ x+\dfrac { { x }^{ 2 } }{ 5 } }$$
  • C. $$\log { \left( \sec { x } \right) + } \dfrac { 1 }{ 6 } \sin ^{ 3 }{ x } +{ x }^{ 2 }$$
  • D. $$\dfrac { 2 }{ 3 } \log { \left( \sec { x } \right) } +\dfrac { 1 }{ 6 } \tan ^{ 2 }{ x+2{ x }^{ 2 } }$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Passage Medium
Consider two differentiable functions $$f(x), g(x)$$ satisfying $$\displaystyle 6\int f(x)g(x)dx=x^{6}+3x^{4}+3x^{2}+c$$ & $$\displaystyle 2 \int \frac {g(x)dx}{f(x)}=x^{2}+c$$. where $$\displaystyle f(x)>0    \forall  x \in  R$$

On the basis of above information, answer the following questions :

Asked in: Mathematics - Limits and Derivatives


1 Verified Answer | Published on 17th 08, 2020

View Answer