Mathematics

$$\displaystyle \int_{-3\pi}^{3\pi}{\sin^{2}\theta\sin^{2} 2\theta d \theta}$$ is equal to-


ANSWER

$$\pi$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$\int\limits_0^1 {\frac{{\sin t}}{{1 + t}}} dt = \alpha ,\,then\,\int\limits_{4\pi  - 2}^{4\pi } {\frac{{\sin (t/2)}}{{4\pi  + 2 - t}}dt} $$ in terms of $$  \alpha $$ is given by
  • A.
  • B. $$ \alpha $$
  • C. $$ 2 \alpha $$
  • D. $$ - \alpha $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int { \cfrac { x }{ 1+{ x }^{ 4 } }  } dx$$ is equal to
  • A. $$\cfrac { 1 }{ 2 } \cot ^{ -1 }{ { x }^{ 2 } } +C$$
  • B. $$\cot ^{ -1 }{ { x }^{ 2 } } +C$$
  • C. $$\tan ^{ -1 }{ { x }^{ 2 } } +C\quad $$
  • D. $$\cfrac { 1 }{ 2 } \tan ^{ -1 }{ { x }^{ 2 } } +C\quad $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
A disc, sliding on an inclined plane , is found to have its position (measured from the top of the plane) at any instant given by $$x = 3{t^2} + 1$$ where $$x$$ is in meter and $$t$$ in second. Its average velocity in the time interval between $$2s\,to\,2$$is
  • A. $$10.2\,m{s^{ - 1}}$$
  • B. $$15.5\,m{s^{ - 1}}$$
  • C. $$9.7\,m{s^{ - 1}}$$
  • D. $$12.3\,m{s^{ - 1}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
If $$f(x)=\int { \left( \dfrac { x^2+\sin^2x }{ 1+x^2 }  \right)  } \sec^2 x dx $$ and f(0)=0,then  f (1) equals:
  • A. $$1-\dfrac { \pi }{ 4 } $$
  • B. $$-\dfrac { \pi }{ 4 } $$
  • C. $$\tan 1+1$$
  • D. $$\tan 1-\dfrac { \pi }{ 4 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Find $$\displaystyle  \int_{0}^{\pi/2} \sin x. \sin 2x\ dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer