Mathematics

# $\displaystyle \int 2x^3+9x^2-8x+5 dx$

##### SOLUTION

$\displaystyle \int 2x^3+9x^2-8x+5 dx\\\displaystyle \int 2x^3 dx+\int 9x^2 dx-\int 8x dx+\int 5 dx\\\dfrac{2x^4}{4}+\dfrac{9x^3}{3}-\dfrac{8x^2}{2}+5x+c\\\dfrac{x^4}{2}+3x^3-4x^2+5x+c$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate $\displaystyle \int_0^\pi {\frac{{{x^2}\sin 2x.\sin \left( {\frac{\pi }{2}\cos x} \right){\rm{ dx}}}}{{\left( {2x - \pi } \right)}}}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\displaystyle \int_{1}^{2}x^2 \ dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
$\int { \sin { 4x } .{ e }^{ \tan ^{ 2 }{ x } } } dx$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
$\displaystyle \int \dfrac {1-x}{1+x}$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
The value of $\int { \dfrac { dx }{ \sqrt { { x-x }^{ 2 } } } } ;\left( x>\dfrac { 1 }{ 2 } \right)$ is equal to
• A. $2{ sin }^{ -1 }\sqrt { X } +C$
• B. $2{ sin }^{ -1 }\left( 2x-1 \right) +C$
• C. ${ cos }^{ -1 }2\sqrt { x-{ x }^{ 2 } } +C$
• D. $C-2{ cos }^{ -1 }\left( 2x-1 \right)$

Asked in: Mathematics - Integrals

1 Verified Answer | Published on 17th 09, 2020