Mathematics

$$\displaystyle \int_{2}^{8}\dfrac {\sqrt {10-x}}{\sqrt {x}+\sqrt {10-x}}dx$$ is


ANSWER

$$1$$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
$$\displaystyle \int _{ 0 }^{ { \pi  }^{ 2 } }{ \dfrac { \sin { \sqrt { x }  }  }{ \sqrt { x }  }  }  dx$$ is equal to
  • A. $$1$$
  • B. $$1/2$$
  • C. $$1/4$$
  • D. $$2$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\displaystyle \int_1^{\sqrt 3}\frac {dx}{1+x^2}$$ equals
  • A. $$\dfrac {\pi}{3}$$
  • B. $$\dfrac {2\pi}{3}$$
  • C. $$\dfrac {\pi}{6}$$
  • D. $$\dfrac {\pi}{12}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Hard
Evaluate: $$\displaystyle \int _{ 0 }^{ \tfrac { \pi  }{ 4 }  }{ \cfrac { \sin { x } +\cos { x }  }{ 7+9\sin { 2x }  }  } dx$$
  • A. $$-\cfrac { \log { 3 } }{ 4 } $$
  • B. $$-\cfrac { \log { 3 } }{ 36 } $$
  • C. $$-\cfrac { \log { 7 } }{ 12 } $$
  • D. $$-\cfrac { \log { 7 } }{ 24 } $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
$$\displaystyle \frac{x^{4}+24x^{2}+28}{(x^{2}+1)^{3}}=$$
  • A. $$\displaystyle \frac{1}{x^{2}+1}-\frac{22}{(x^{2}+1)^{2}}+\frac{5}{(x^{2}+1)^{3}}$$
  • B. $$\displaystyle \frac{1}{x^{2}+1}+\frac{22}{(x^{2}+1)^{2}}+\frac{28}{(x^{2}+1)^{3}}$$
  • C. $$\displaystyle \frac{1}{x^{2}+1}+\frac{23}{(x^{2}+1)^{2}}+\frac{4}{(x^{2}+1)^{3}}$$
  • D. $$\displaystyle \frac{1}{x^{2}+1}+\frac{22}{(x^{2}+1)^{2}}+\frac{5}{(x^{2}+1)^{3}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Easy
Evaluate:
$$ \int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer