Mathematics

# $\displaystyle \int_{2}^{8}\dfrac {\sqrt {10-x}}{\sqrt {x}+\sqrt {10-x}}dx$ is

$1$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
$\displaystyle \int _{ 0 }^{ { \pi }^{ 2 } }{ \dfrac { \sin { \sqrt { x } } }{ \sqrt { x } } } dx$ is equal to
• A. $1$
• B. $1/2$
• C. $1/4$
• D. $2$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \int_1^{\sqrt 3}\frac {dx}{1+x^2}$ equals
• A. $\dfrac {\pi}{3}$
• B. $\dfrac {2\pi}{3}$
• C. $\dfrac {\pi}{6}$
• D. $\dfrac {\pi}{12}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
Evaluate: $\displaystyle \int _{ 0 }^{ \tfrac { \pi }{ 4 } }{ \cfrac { \sin { x } +\cos { x } }{ 7+9\sin { 2x } } } dx$
• A. $-\cfrac { \log { 3 } }{ 4 }$
• B. $-\cfrac { \log { 3 } }{ 36 }$
• C. $-\cfrac { \log { 7 } }{ 12 }$
• D. $-\cfrac { \log { 7 } }{ 24 }$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle \frac{x^{4}+24x^{2}+28}{(x^{2}+1)^{3}}=$
• A. $\displaystyle \frac{1}{x^{2}+1}-\frac{22}{(x^{2}+1)^{2}}+\frac{5}{(x^{2}+1)^{3}}$
• B. $\displaystyle \frac{1}{x^{2}+1}+\frac{22}{(x^{2}+1)^{2}}+\frac{28}{(x^{2}+1)^{3}}$
• C. $\displaystyle \frac{1}{x^{2}+1}+\frac{23}{(x^{2}+1)^{2}}+\frac{4}{(x^{2}+1)^{3}}$
• D. $\displaystyle \frac{1}{x^{2}+1}+\frac{22}{(x^{2}+1)^{2}}+\frac{5}{(x^{2}+1)^{3}}$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$