Mathematics

$\displaystyle \int_2^4 (6x^3 + 5x) dx =$

SOLUTION
$\displaystyle I = \int_z^y (6x^3 + 5x)dx$
$\displaystyle =6\int_z^y x^3dx + 5\int_z^y x \, dx$
$=6\left[\dfrac{x^4}{4}\right]^y_z + 5\left[\dfrac{x^2}{2}\right]^y_z$
$=\dfrac{3}{2} \left[y^4 - z^4\right] + \dfrac{3}{2} [y^2 - z^2] = \dfrac{3}{2}[240] + \dfrac{5}{2}[12]$
$=360+30 = 390$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Subjective Medium
Integrate: $\sin ^ { 3 } x \cos ^ { 3 } x$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\displaystyle \lim_{n\rightarrow \infty }\frac{1}{n}\sum_{r=1}^{2n}\frac{r}{\sqrt{n^{2}+r^{2}}}$ equals
• A. $\displaystyle 1+\sqrt{5}$
• B. $\displaystyle -1+\sqrt{2}$
• C. $\displaystyle 1+\sqrt{2}$
• D. $\displaystyle -1+\sqrt{5}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Hard
$\displaystyle \int \cos ^{-1}x {dx}=$
• A. $x \cos^{-1}x+\sqrt{1-x^2}+C$
• B. $\cos^{-1}x+\sqrt{1-x^2}+C$
• C. None of these
• D. $x \cos^{-1}x-\sqrt{1-x^2}+C$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle \int\frac{1-\sqrt{x}}{1+\sqrt[4]{x}}dx=$
• A. $x+\displaystyle \dfrac{4}{5}x^{5/4}+c$
• B. $x-\displaystyle \dfrac{2}{5}x^{5/4}+c$
• C. $x-\displaystyle \dfrac{3}{5}x^{5/4}+c$
• D. $x-\displaystyle \dfrac{4}{5}x^{5/4}+c$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
Evaluate: $\displaystyle\int {\frac{1}{{{a^x}{b^x}}}} \,dx$