Mathematics

$$\displaystyle \int _{ 2 }^{ 3 }{ \left( 1+2x \right)  } dx$$


SOLUTION
$$\int_{2} ^{3} (1 + 2x) dx$$

$$ = \left[x + x^2 \right]_{2} ^{3} $$

$$ = [(3 + 9) - (2 + 4)] $$

$$ = 12 - 6 $$

$$ = 6 $$(Ans)
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84
Enroll Now For FREE

Realted Questions

Q1 Subjective Hard
Evaluate : $$\displaystyle \int {\frac{{{x^2} - 1}}{{\left( {x + 1} \right)\left( {x + 2} \right)}}dx} $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Medium
$$\int {\sqrt {x + a\sqrt {ax - {a^2}} } \,dx,0 < a < 2 = \frac{2}{{{a^{\frac{3}{2}}}}}{{\left\{ {ax + a\sqrt {ax - {a^2}} } \right\}}^{\frac{3}{2}}} - \frac{{\sqrt a }}{2}\left[ {A + B} \right]}  + c$$. Then
  • A. $$A = \left[ {\left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right)\sqrt {ax + {a^2}\sqrt {ax - {a^2}} } } \right\}} \right]$$
  • B. $$A = \left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right)\sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}$$
  • C. $$B = \log \left\{ {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}\sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}$$
  • D. $$B = \log \left[ {\left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right) + \sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}} \right]$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Single Correct Medium
lf $$\displaystyle \int\frac{1}{1+\cot x}dx=_{A}$$ Iog $$|Sinx+$$ Cos $$x|+$$ Bx $$+c$$, then $$A=\ldots\ldots..,\ B=\ldots\ldots\ldots.$$,
  • A. $$-1, 1$$
  • B. $$\displaystyle \frac{1}{3},\frac{1}{2}$$
  • C. $$\displaystyle \frac{-1}{3},\frac{1}{2}$$
  • D. $$-\displaystyle \frac{1}{2},\frac{1}{2}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Evaluate : $$\displaystyle \int_{\pi/6}^{\pi/3}{\cfrac{1}{1+\sqrt{\tan{x}}}}dx$$.

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
If $$\int \dfrac{dx}{\sqrt{x}(x + 9)} = f(x) +$$ constant, then $$f(x) =$$
  • A. $$\dfrac{2}{3}\tan^{-1} \sqrt{x}$$
  • B. $$\tan^{-1}\sqrt{x}$$
  • C. $$\tan^{-1}\left(\dfrac{\sqrt{x}}{3}\right)$$
  • D. $$\dfrac{2}{3}\tan^{-1}\left(\dfrac{\sqrt{x}}{3}\right)$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer