Mathematics

$\displaystyle \int _{ 2 }^{ 3 }{ \left( 1+2x \right) } dx$

SOLUTION
$\int_{2} ^{3} (1 + 2x) dx$

$= \left[x + x^2 \right]_{2} ^{3}$

$= [(3 + 9) - (2 + 4)]$

$= 12 - 6$

$= 6$(Ans)

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Subjective Hard
Evaluate : $\displaystyle \int {\frac{{{x^2} - 1}}{{\left( {x + 1} \right)\left( {x + 2} \right)}}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Medium
$\int {\sqrt {x + a\sqrt {ax - {a^2}} } \,dx,0 < a < 2 = \frac{2}{{{a^{\frac{3}{2}}}}}{{\left\{ {ax + a\sqrt {ax - {a^2}} } \right\}}^{\frac{3}{2}}} - \frac{{\sqrt a }}{2}\left[ {A + B} \right]} + c$. Then
• A. $A = \left[ {\left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right)\sqrt {ax + {a^2}\sqrt {ax - {a^2}} } } \right\}} \right]$
• B. $A = \left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right)\sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}$
• C. $B = \log \left\{ {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}\sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}$
• D. $B = \log \left[ {\left\{ {\left( {\sqrt {ax - {a^2}} + \frac{{{a^2}}}{2}} \right) + \sqrt {ax + a\sqrt {ax - {a^2}} } } \right\}} \right]$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
lf $\displaystyle \int\frac{1}{1+\cot x}dx=_{A}$ Iog $|Sinx+$ Cos $x|+$ Bx $+c$, then $A=\ldots\ldots..,\ B=\ldots\ldots\ldots.$,
• A. $-1, 1$
• B. $\displaystyle \frac{1}{3},\frac{1}{2}$
• C. $\displaystyle \frac{-1}{3},\frac{1}{2}$
• D. $-\displaystyle \frac{1}{2},\frac{1}{2}$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate : $\displaystyle \int_{\pi/6}^{\pi/3}{\cfrac{1}{1+\sqrt{\tan{x}}}}dx$.

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
If $\int \dfrac{dx}{\sqrt{x}(x + 9)} = f(x) +$ constant, then $f(x) =$
• A. $\dfrac{2}{3}\tan^{-1} \sqrt{x}$
• B. $\tan^{-1}\sqrt{x}$
• C. $\tan^{-1}\left(\dfrac{\sqrt{x}}{3}\right)$
• D. $\dfrac{2}{3}\tan^{-1}\left(\dfrac{\sqrt{x}}{3}\right)$