Mathematics

# $\displaystyle \int_{0}^{\pi}x.\sin^{3}xdx_{=}$

$\displaystyle \frac{2\pi}{3}$

##### SOLUTION
$I=\int_{0}^{\pi}x\ sin^{3}x\ dx$
$I=\int_{0}^{\pi}(\pi-x) sin^{3}x\ dx$
$I=\pi \int_{0}^{\pi}x\ sin^{3}x\ dx=I$
$2I=2\pi \left ( \dfrac{2}{3} \right )$
$I=2 {\pi}/{3}$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105

#### Realted Questions

Q1 Subjective Medium
The value of $\displaystyle\int\limits_{-1}^{1}\sin ^{11}x.\cos^{12}x\ dx$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Evaluate $\displaystyle\int_{-\pi/4}^{\pi/4}|\sin x|\ dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
The quadratic polynomial $p(x)$ has the following properties: $p(x)\ge 0$ for all real number, $p(1)=$ and $p(2)=2$ value of $p(0)+p(3)$ is equal to
• A. $9$
• B. $8$
• C. $None \ of \ these$
• D. $10$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate the given integral.
$\int { 2{ x }^{ 2 }{ e }^{ { x }^{ 3 } } } dx$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$