Mathematics

# $\displaystyle \int_{0}^{2}2x dx=$

##### SOLUTION
$\displaystyle \int_{0}^{2}2x dx\\\left.x^2\right|_0^2\\2^2-0^2=4$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Single Correct Medium
If $\int { { e }^{ 2x } } f'(x)dx=g(x)$, then $\int { \left( { e }^{ 2x }f(x)+{ e }^{ 2x }f'(x) \right) } dx$
• A. $\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(x)-g(x) \right] +C$
• B. $\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(2x)+g(x) \right] +C$
• C. $\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f'(x)-g(x) \right] +C$
• D. $\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(x)+g(x) \right] +C$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Solve $\displaystyle\int { \dfrac { { e }^{ 6\log { x } }-{ e }^{ 5\log { x } } }{ { e }^{ 4\log { x } }-{ e }^{ 3\log { x } } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Prove that $\displaystyle\int \frac{x^{24}}{x^{10}+1}dx=\left [ \frac{t^{3}}{3}-t+\tan ^{-1} t\right ]where\, t=x^{5}$.

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Solve:
$\displaystyle \int \dfrac { \sin ^ { 3 } x + \cos ^ { 3 } x } { \sin ^ { 2 } x \cos ^ { 2 } x } d x$

Evaluate $\int {(1 - x} )\left( {2 + 3x} \right)dx =$