Mathematics

$$\displaystyle \int_{0}^{2}2x dx=$$


SOLUTION
$$\displaystyle \int_{0}^{2}2x dx\\\left.x^2\right|_0^2\\2^2-0^2=4$$
View Full Answer

Its FREE, you're just one step away


Subjective Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86
Enroll Now For FREE

Realted Questions

Q1 Single Correct Medium
If $$\int { { e }^{ 2x } } f'(x)dx=g(x)$$, then $$\int { \left( { e }^{ 2x }f(x)+{ e }^{ 2x }f'(x) \right)  } dx$$
  • A. $$\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(x)-g(x) \right] +C$$
  • B. $$\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(2x)+g(x) \right] +C$$
  • C. $$\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f'(x)-g(x) \right] +C$$
  • D. $$\cfrac { 1 }{ 2 } \left[ { e }^{ 2x }f(x)+g(x) \right] +C$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Subjective Medium
Solve $$\displaystyle\int { \dfrac { { e }^{ 6\log { x }  }-{ e }^{ 5\log { x }  } }{ { e }^{ 4\log { x }  }-{ e }^{ 3\log { x }  } }  } dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Prove that $$\displaystyle\int \frac{x^{24}}{x^{10}+1}dx=\left [ \frac{t^{3}}{3}-t+\tan ^{-1} t\right ]where\, t=x^{5}$$. 

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Subjective Medium
Solve:
$$\displaystyle \int \dfrac { \sin ^ { 3 } x + \cos ^ { 3 } x } { \sin ^ { 2 } x \cos ^ { 2 } x } d x$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Subjective Medium
Evaluate $$\int {(1 - x} )\left( {2 + 3x} \right)dx =$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer