Mathematics

# $\displaystyle \int_{0}^{1}\frac{2^{x+1}-3^{x-1}}{6^{x}}dx$

$\displaystyle \frac{4}{3}\log _{3}e-\frac{1}{6}\log _{2}e.$

##### SOLUTION
$\displaystyle \int _{ 0 }^{ 1 } \frac { 2^{ x+1 }-3^{ x-1 } }{ 6^{ x } } dx=\int _{ 0 }^{ 1 } \left( 2.3^{ -x }-\frac { 1 }{ 3 } 2^{ -x } \right) dx$

$\displaystyle =\left[ -2\frac { 3^{ -x } }{ \log 3 } +\frac { 1 }{ 3 } \frac { 2^{ -x } }{ \log 2 } \right] ^{ 1 }$

$\displaystyle =-\frac { 2 }{ \log 3 } \left( \frac { 1 }{ 3 } -1 \right) +\frac { 1 }{ 3\log 2 } \left( \frac { 1 }{ 2 } -1 \right)$

$\displaystyle =\frac { 4 }{ 3 } \log _{ 3 } e-\frac { 1 }{ 6 } \log _{ 2 } e$
Hence, option 'A' is correct.

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

#### Realted Questions

Q1 Subjective Medium
Evaluate $\displaystyle\int^4_3\dfrac{dx}{(x^2-4)}$.

1 Verified Answer | Published on 17th 09, 2020

Q2 Single Correct Hard
The value of the integral
$\displaystyle \int _{ -1 }^{ 1 }{ \left\{ \cfrac { { x }^{ 2013 } }{ { e }^{ \left| x \right| }\left( { x }^{ 2 }+\cos { x } \right) } +\cfrac { 1 }{ { e }^{ \left| x \right| } } \right\} } dx$ is equal to
• A. $0$
• B. $1-{e}^{-1}$
• C. $2{e}^{-1}$
• D. $2(1-{e}^{-1})$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\int (2x^2+e^x)dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\int \:\dfrac{1-x^7}{x\left(1+x^7\right)}dx$ equals
• A. $ln\left|x\right|-\dfrac{2}{4}ln\left|1-x^7\right|+c$
• B. $ln\left|x\right|-\dfrac{2}{7}ln\left|1+x^7\right|+c$
• C. $ln\left|x\right|+\dfrac{2}{4}ln\left|1-x^7\right|+c$
• D. $ln\left|x\right|+\dfrac{2}{7}ln\left|1+x^7\right|+c$

1 Verified Answer | Published on 17th 09, 2020

Q5 Subjective Medium
solve $\int \frac{1}{1+e^{-1}}\;dx$