Mathematics

$$\displaystyle \int _{ 0 }^{ x }{ \cfrac { \sin { x }  }{ 1+\cos ^{ 2 }{ x }  }  } dx=\pi \cfrac { \cos { \alpha  }  }{ 1-\sin ^{ 2 }{ \alpha  }  } $$


ANSWER

for exactly one $$\alpha$$ in $$\left( 0,\pi /2 \right) $$


View Full Answer

Its FREE, you're just one step away


Single Correct Medium Published on 17th 09, 2020
Next Question
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 105
Enroll Now For FREE

Realted Questions

Q1 Subjective Medium
Evaluate the following integral:

$$\displaystyle\int_{0}^{2}x\sqrt{x+2}dx$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q2 Single Correct Hard
Evaluate the following integrals:$$ \displaystyle \int \sqrt{3x^{2}+4}dx $$
  • A. $$ \dfrac{x}{2}.\sqrt{3x+4}+\dfrac{2}{\sqrt{3}} \log\left | \sqrt{3}x+\sqrt{3x^{2}+4} \right |+C $$
  • B. $$ \dfrac{x}{2}.\sqrt{3x^{2}+4}+\dfrac{4}{\sqrt{3}} \log\left | \sqrt{3}x+\sqrt{3x^{2}+4} \right |+C $$
  • C. None of these
  • D. $$ \dfrac{x}{2}.\sqrt{3x^{2}+4}+\dfrac{2}{\sqrt{3}} \log\left | \sqrt{3}x+\sqrt{3x^{2}+4} \right |+C $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q3 Subjective Medium
Evaluate the following definite integral : 
$$ \int_0 ^{\pi/2}$$  $$ \dfrac {cos ^{5}x} {sin ^{5} x + cos ^{5} x} dx $$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q4 Single Correct Medium
If $$I_n=\displaystyle\int^1_0\dfrac{dx}{(1+x^2)^n}; n\in N$$, then which of the following statements hold good?
  • A. $$I_2=\dfrac{\pi}{8}+\dfrac{1}{4}$$
  • B. $$I_2=\dfrac{\pi}{8}-\dfrac{1}{4}$$
  • C. $$I_3=\dfrac{\pi}{16}-\dfrac{5}{48}$$
  • D. $$2n I_{n+1}=2^{-n}+(2n-1)I_n$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer
Q5 Single Correct Medium
$$\int {\cfrac{{dx}}{{{x^2}{{\left( {1 + {x^5}} \right)}^{4/5}}}}} $$ is equal to:
  • A. $$ - \cfrac{{{{\left( {1 + {x^5}} \right)}^{1/5}}}}{{5x}} + {\rm{C}}$$
  • B. $$\cfrac{{{{\left( {1 + {x^5}} \right)}^{1/5}}}}{{5x}} + {\rm{C}}$$
  • C. $$\cfrac{{{{\left( {1 + {x^5}} \right)}^{1/5}}}}{x} + {\rm{C}}$$
  • D. $$ - \cfrac{{{{\left( {1 + {x^5}} \right)}^{1/5}}}}{x} + {\rm{C}}$$

Asked in: Mathematics - Integrals


1 Verified Answer | Published on 17th 09, 2020

View Answer