Mathematics

# $\displaystyle \int _{ 0 }^{ \pi /2 }{ \dfrac { dx }{ 2+\cos { x } } = }$

$\dfrac { 1 }{ \sqrt { 3 } } \tan ^{ -1 }{ \left( \dfrac { 1 }{ \sqrt { 3 } } \right) }$

Its FREE, you're just one step away

Single Correct Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Subjective Medium
Integrate the function    $\cfrac {1}{\sqrt {(x-1)(x-2)}}$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
Integrate the function  $e^{2x+3}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
If $\displaystyle \int \frac{\log (t + \sqrt{1 + t^2})}{\sqrt{1 + t^2}} dt = \frac{1}{2} (g (t))^2 + C$ where C is a constant, then $g(2)$ is equal to
• A. $\displaystyle \frac{1}{\sqrt 5} \log (2 + \sqrt 5)$
• B. $2 \log (2 + \sqrt 5)$
• C. $\displaystyle \frac{1}{2}\log (2 + \sqrt 5)$
• D. $\log (2 + \sqrt 5)$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
If $f(x) = \dfrac{2 \sin x- \sin2x}{x^3}$ where $x\neq 0$, then $\lim_\limits {x \to 0} f(x)$ has the value;
• A. $0$
• B. $2$
• C. Not defined.
• D. $1$

$\int_{}^{} {\frac{{ - 1}}{{\sqrt {1 - {x^2}} }}dx}$