Mathematics

# Differentiate the following function with respect to x.$(2x^2-3)\sin x$.

##### SOLUTION

Given expression

$(2x^2-3)\sin x$

$\dfrac d{dx} ((2x^2-3)\sin x)$

$\dfrac d{dx}(2x^2-3)\sin x+2x^2-3\dfrac d{dx}(\sin x)$

$\implies 4x\sin x+(2x^2-3)\cos x$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 Single Correct Hard
$\dfrac{2x^3+x^2-5}{x^4-25}=\dfrac{Ax+B}{x^2-5}+\dfrac{Cx+1}{x^2+5}\Rightarrow (A, B, C)=$
• A. (1, 1, 1)
• B. (1, 1, 0)
• C. (1, 2, 1)
• D. (1, 0, 1)

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\text { Evaluate: } \displaystyle \int_{-\pi / 2}^{\pi / 2} \dfrac{\cos x}{1+e^{x}} \mathrm{d} \mathrm{x}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
$\int_{0}^{\infty }\frac{log(1+x^{2})}{1+x^{2}}dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate $\displaystyle\int^2_0\dfrac{(x^4+1)}{(x^2+1)}dx$.

Given that for each $\displaystyle a \in (0, 1), \lim_{h \rightarrow 0^+} \int_h^{1-h} t^{-a} (1 -t)^{a-1}dt$ exists. Let this limit be $g(a)$
In addition, it is given that the function $g(a)$ is differentiable on $(0, 1)$