Mathematics

Evaluate  : $\displaystyle \int _{ 10 }^{ 2 }{ { \left( { x }^{ 2 }+x+2 \right) dx } }$

SOLUTION
$\displaystyle \int_{10}^{2}{\left({x}^{2}+x+2\right)dx}$
$=\left[\dfrac{{x}^{3}}{3}+\dfrac{{x}^{2}}{2}+2x\right]_{10}^{2}$
$=\dfrac{1}{3}\left(1000-8\right)+\dfrac{1}{2}\left(100-4\right)+2\left(10-2\right)$
$=\dfrac{992}{3}+\dfrac{96}{2}+2\times 8$
$=\dfrac{992}{3}+48+16$
$=\dfrac{992}{3}+64$
$=\dfrac{1184}{3}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

Realted Questions

Q1 Single Correct Hard

$\displaystyle \int_{0}^{\pi}\frac{\sin(2n-1)x}{\sin x}dx,\ (n\in N)$ is equal to
• A. 1
• B. $\displaystyle \frac{\pi}{2}$
• C. $2\pi$
• D. $\pi$

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Hard
Evaluate
$\int \dfrac{\sqrt{1+x^{2}}}{x} dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Single Correct Medium
Evaluate $\displaystyle \int\frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}}dx$
• A. $\displaystyle \dfrac { 3{ \left( \sqrt { x } +1 \right) }^{ \frac { 4 }{ 3 } } }{ 4 } +c$
• B. $\displaystyle \dfrac { { \left( \sqrt { x } +1 \right) }^{ \frac { 4 }{ 3 } } }{ 4 } +c$
• C. $\displaystyle \dfrac { { \left( \sqrt { x } +1 \right) }^{ \frac { 2 }{ 3 } } }{ 3 } +c$
• D. $\displaystyle \dfrac { 4{ \left( \sqrt { x } +1 \right) }^{ \frac { 3 }{ 2 } } }{ 3 } +c$

1 Verified Answer | Published on 17th 09, 2020

Q4 Single Correct Medium
$\displaystyle \int\{\frac{(\log \mathrm{x}-1)}{(1+(\log \mathrm{x})^{2}}\}^{2}$ dx is equal to

• A. $\dfrac{logx}{(logx)^{2}+1}+c$
• B. $\dfrac{x}{x^{2}+1}+c$
• C. $\dfrac{xe^{x}}{1+x^{2}}+c$
• D. $\dfrac{x}{(logx)^{2}+1}+c$

If $f,g,h$ be continuous functions on $[0,a]$ such that $f(a-x)=-f(x),g(a-x)=g(x)$ and $3h(x)-4h(a-x)=5$ then  $\displaystyle \int_0^a f(x)g(x)h(x)dx=0$