Mathematics

Evaluate: $\displaystyle\int _{ 0 }^{ 2 }{ x\sqrt { x+2 } dx }$

SOLUTION
Let $t={\left(x+2\right)}^{2}\Rightarrow dt=2\left(x+2\right)dx$

When $x=0\Rightarrow t=4$ and when $x=2\Rightarrow t=16$

$\displaystyle\int_{0}^{2}{\left(x+2-2\right)\sqrt{x+2}dx}$

$=\displaystyle\int_{0}^{2}{\left(x+2\right)\sqrt{x+2}dx}-2\displaystyle\int_{0}^{2}{\sqrt{x+2}dx}$

$=\dfrac{1}{2}\displaystyle\int_{4}^{16}{\sqrt{t}dt}-2\displaystyle\int_{0}^{2}{\sqrt{x+2}dx}$

$=\dfrac{1}{2}\left[\dfrac{{t}^{\frac{1}{2}+1}}{\dfrac{1}{2}+1}\right]_{4}^{16}-2\left[\dfrac{{\left(x+2\right)}^{\frac{1}{2}+1}}{\dfrac{1}{2}+1}\right]_{0}^{2}$

$=\dfrac{1}{3}\left[{t}^{\frac{3}{2}}\right]_{4}^{16}-2\times\dfrac{2}{3}\left[{\left(x+2\right)}^{\frac{3}{2}}\right]_{0}^{2}$

$=\dfrac{1}{2}\left[{16}^{\frac{3}{2}}-{4}^{\frac{3}{2}}\right]-\dfrac{4}{3}\left[{\left(2+2\right)}^{\frac{3}{2}}-{\left(0+2\right)}^{\frac{3}{2}}\right]$

$=\dfrac{1}{2}\left[64-8\right]-\dfrac{4}{3}\left[8-2\sqrt{2}\right]$

$=28-\dfrac{32}{3}+\dfrac{8\sqrt{2}}{3}$

$=\dfrac{52+8\sqrt{2}}{3}$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 86

Realted Questions

Q1 Subjective Medium
Solve:
$\displaystyle \int{\dfrac{3x-7}{x+1}dx}$

1 Verified Answer | Published on 17th 09, 2020

Q2 One Word Medium
Evaluate:$\displaystyle \int \frac{dx}{(3x-2x-x^{2})}$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Hard
$\int { \frac { \ln { \left( 1+{ e }^{ x } \right) } }{ { e }^{ x } } } dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Medium
Evaluate: $\displaystyle\int {{sin^{ - 1}}} \left( {{{2x} \over {1 + {x^2}}}} \right)dx$

1 Verified Answer | Published on 17th 09, 2020

Q5 Single Correct Medium
If $f(a+b-x)=f(x)$ then $\int _{a}^{b}{x\ f(x)dx}=$

• A. $\int _{ a }^{ b }{ f\left( x \right) dx }$
• B. $(a+b)\int _{ a }^{ b }{ f\left( x \right) dx }$
• C. $0$
• D. $\left( \dfrac { a+b }{ 2 } \right) \int _{ a }^{ b }{ f\left( x \right) dx }$