Mathematics

# $\displaystyle \int e^{2x-3}+7^{4-3(x/2)}+\sin \left ( 3x-\frac{1}{2} \right )+\cos \left ( \frac{2}{5}x-2 \right )+a^{3x+2}dx$  is

##### SOLUTION
Let $\displaystyle I=\int e^{ 2x-3 }+7^{ 4-3(x/2) }+\sin \left( 3x-\frac { 1 }{ 2 } \right) +\cos \left( \frac { 2 }{ 5 } x-2 \right) +\alpha ^{ 3x+2 }dx\\ ={ I }_{ 1 }+{ I }_{ 2 }+{ I }_{ 3 }+{ I }_{ 4 }+{ I }_{ 5 }$
Where
$\displaystyle { I }_{ 1 }=\int { e^{ 2x-3 }dx } =\frac { 1 }{ 2 } e^{ 2x-3 }$

$\displaystyle { I }_{ 2 }=\int { 7^{ 4-3(x/2) }dx }$
Put $\displaystyle t=4-\frac { 3x }{ 2 } \Rightarrow dt=-\frac { 3 }{ 2 }dx$

$\displaystyle { I }_{ 2 }=-\frac { 2 }{ 3 } \int { 7^{ t }dt }=-\frac{2}{3}\frac{7^t}{\log 7} =-\frac { 2 }{ 3 } \cdot 7^{ 4-3(x/2) }\cfrac{1}{\log 7}$

$\displaystyle { I }_{ 3 }=\int { \sin \left( 3x-\frac { 1 }{ 2 } \right) dx } =-\frac { 1 }{ 3 } \cos \left( 3x-\frac { 1 }{ 2 } \right)$

$\displaystyle { I }_{ 4 }=\int { \cos \left( \frac { 2 }{ 5 } x-2 \right) dx } =\frac { 5 }{ 2 } \sin \left( \frac { 2 }{ 5 } x-2 \right)$

$\displaystyle { I }_{ 5 }=\int { a ^{ 3x+2 }dx } =\frac { 1 }{ 3 } \frac { a^{ 3x+2 } }{ \log\: a }$

Therefore
$\displaystyle I=\frac { 1 }{ 2 } e^{ 2x-3 }-\frac { 2 }{ 3 } \cdot 7^{ 4-3(x/2) }\frac { 1 }{ \log 7 } -\frac { 1 }{ 3 } \cos \left( 3x-\frac { 1 }{ 2 } \right) +\frac { 5 }{ 2 } \sin \left( \frac { 2 }{ 5 } x-2 \right) +\frac { 1 }{ 3 } \frac { a^{ 3x+2 } }{ \log\: a }$

Its FREE, you're just one step away

Subjective Medium Published on 17th 09, 2020
Questions 203525
Subjects 9
Chapters 126
Enrolled Students 84

#### Realted Questions

Q1 One Word Medium
The value of $\displaystyle \underset{0}{\overset{x}{\int}} \dfrac{(t - |t|)^2}{(1 + t^2)} dt$ is equal to

1 Verified Answer | Published on 17th 09, 2020

Q2 Subjective Medium
$\int {\cos e{c^2}x} \log \sec x\,dx$

1 Verified Answer | Published on 17th 09, 2020

Q3 Subjective Medium
Evaluate:
$\displaystyle \int_{0}^{\pi /2} {1+\sin x} dx$

1 Verified Answer | Published on 17th 09, 2020

Q4 Subjective Hard
Integrate the following function$\dfrac {\cos x}{\sqrt {4-\sin^{2}}x}$

$\int \frac{2x^{2}}{3x^{4}2x} dx$